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Abstract

x

We prove the existence of pairwise stable weighted networks under assumptions on payoffs which
are similar to those in Nash’s theorem (quasiconcavity and continuity). Then, we extend our result,
allowing payoffs to depend not only on the network, but also on some game-theoretic strategies.
The proof is not a standard application of tools from game theory, the difficulty coming from the
fact that pairwise stability notion shares both cooperative and non cooperative features. Last, some
examples are given, and illustrate how our result may open new paths in the literature on network
formation.
JEL codes: C72, D85.
Keywords: Pairwise Stable Network, Weighted Network.

1. Introduction

In recent years, there has been a growing interest in networks for modelling social and economic
interactions. A network can be defined as a set N of nodes (representing for example economic
agents, families, web sites, scholarly publications, etc.) and a set of links, measuring some relation-
ships between the nodes (for example, friendship or familial relationships, co-author relationships,
hyperlinks between web pages, transactions between financial institutions, etc.).

An important contribution of network literature has been to propose strategic models of network
formation (e.g., Aumann and Myerson [1], Slikker and van den Nouweland [24] or Myerson [21]),1

explaining how, and why, agents establish links, based on payoff maximization. In particular, such
models have helped to understand the emergence of specific forms of networks.

A key concept involved in network formation theory, introduced in their seminal paper by Jackson
and Wolinsky [18], is pairwise stability.2 Roughly, a network is pairwise stable if “no two agents could
gain from linking and no single agent could gain by severing one of his or her link" (see [18]). Its
main distinctive feature, compared with Nash equilibrium, is its “cooperative" aspect, since it also
takes bilateral deviations into account (when links are created), whereas Nash equilibrium concept
only considers unilateral deviations. Beyond this difference, it is also a natural predictive solution
concept.

Since the seminal paper of Jackson and Wolinsky [18], pairwise stability has been one of the most
popular stability concepts in the network literature (see, for example, Jackson and Watts [16], Goyal
and Joshi [12], Calvó-Armengol and İlkılıç [8], Hellmann [13] [14], Miyauchi [20], Bloch and Dutta
[3], and for surveys Jackson [15], Mauleon and Vannetelbosch [19]). One of its remarkable features
is that it allows to endogenize the formation of networks. Yet, there is no general existence result of
weighted pairwise stable networks, in the spirit of Nash equilibrium existence result (see [11], [22]
or [23]).

1For a recent survey on this subject, see Chapter 6 of “The Oxford Handbook on the Economics of Networks", by
Ana Mauleon and Vincent Vannetelbosch [19].

2This is not the only stability concept used in network formation theory. For example, for networks whose weights
of links are separable functions of the efforts of the agents implied in the link, Nash equilibrium is a good candidate:
see [3] or [25]. See also Section 3.3.
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The few existing results in the literature consider unweighted3 networks. Unfortunately, in general,
there may be no unweighted pairwise stable network, which is due to the possibility of the existence
of improving cycles (a closed path of networks for which at each step, the utility of one or two
agents is improved by deleting or adding a link). Indeed, Jackson and Watts (see [16] and [17])
have proved that for every profile of payoff functions, either there exists a pairwise stable network,
or there exists a closed improving cycle. As a byproduct, under the assumption that there exists
some network potential function, closed cycles are ruled out, and the existence of pairwise stable
networks is obtained (Jackson and Watts [16]). This general approach has been extended or refined
(see Chakrabarti and Gilles [9] or Hellmann [13]), but in practice, it remains difficult to know if
there exists or not some potential function.

There are several reasons for being interested in weighted networks, i.e. networks for which the
relationships are measured by reals. First, in many situations, it is natural to quantify the weight of
a relationship in a continuous way (it can measure a debt, some level of confidence, some capacity,
a geographical distance...). A second reason is the simplicity of continuous models: for example, in
game theory, it is well known that passing to continuous strategy spaces (through mixed strategies
for example) allows to get the existence of a Nash equilibrium almost for free. We will see that this
is also true for network theory: passing from unweighted networks to weighted ones allows to get
the existence of a pairwise stable network under weak assumptions. This should allow for many
developments (e.g., structure of the set of pairwise stable networks, refinement notions, conditions
for uniqueness, ...).

Aim and main results of our paper

The aim of this paper is to prove the existence of a pairwise stable weighted network under conditions
similar to Nash theorem existence result: some geometric condition (quasiconcavity of payoffs with
respect to each link), and some topological condition (continuity). In particular, as opposed to the
case of unweighted networks, the existence of closed improving cycles does not prevent the existence
of pairwise stable weighted networks.

Our method of proof (1) is specific to weighted networks (2) does not use a direct game theory
argument. Indeed, first, previous arguments for unweighted networks cannot be extended to our
framework, because our main assumptions (continuity and quasiconcavity of payoffs) do not guaran-
tee the existence of a potential function, a crucial assumption for proving the existence of unweighted
pairwise stable networks. Second, applying directly tools from game theory to our problem is prob-
lematic: if we think about the weights of the links as strategic variables, then it is unclear how
the players and the associated payoff functions can be defined, because at each link are attached
two agents (thus two distinct payoff functions), and also because the rules of pairwise stability mix
cooperative and non cooperative behaviours. To solve this issue, we first compute the two sets of
optimal weights (in terms of payoff maximization) of each player at every link (all the other weights
being fixed). Then, the main idea of the proof is to "merge" these optimal sets, in order to (1) take
into account the structure of Pairwise stability concept, (2) keep enough regularity to be able to
apply Kakutani’s fixed-point theorem to the multivalued function thus defined4. This will provide
the existence of a pairwise stable weighted network.

More generally, we prove the existence of a Nash-pairwise stable pair (g, y), which incorporates a
network g and some strategy profile y = (y1, ..., yN ) of an additional normal form game between

3A network is unweighted if a link can be in two possible states (connection or no connection). In particular, in
this case, the space of links is discrete.

4This is the multivalued function which associates to each weighted network the product of the "merged" optimal
sets at each link.
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the agents involved in the network. Here, the strategy yi may have no direct relationship with the
network.5 For example, we can think that some players i = 1, ..., N exert some efforts (these are
the strategies yi of the game) for the provision of a public good, and that at the same time, an
endogenous network g of relationships is formed between these agents. Here, the weights of g are not
functions of the yi, but the payoff function of each player depends on (g, y), so that at equilibrium,
the network will depend on the choices of efforts (and conversely).

Roughly, a pair (g, y) is Nash-pairwise stable if:

1. The network g being fixed, no player can improve strictly his payoff by changing his individual
strategy yi.

2. The profile of strategies y being fixed, no player can improve strictly his payoff by decreasing
his link with another player.

3. Finally, the profile of strategies y being fixed, no two agents could gain from increasing the
weight of their common link.

The case where y plays no role gives the standard pairwise stability concept (thus in particular,
our general existence result entails the existence of pairwise stable networks), and the case where g
plays no role provides a standard Nash existence result. Our formalism encompasses many existing
models, and provides some endogenous explanation of network formation in most of them, for
example models on public goods provision on networks (e.g., [6]).

Organization of the paper

The paper is organized as follows. After preliminaries, where pairwise stability definition is recalled
(Section 2), we state our main existence result and provide some examples (Section 3). The proof
of our main result is given in Section 4.

2. Preliminaries

There are N agents6 which interact in a network of relationships. The strength7 of the relationship
involving two agents i ∈ N and j ∈ N is gij ∈ [0, 1]. For example, gij can measure information
exchange, or time spent together. We let L := {(i, j) ∈ N ×N : i 6= j} be the set of directed links,
and L′ := {{i, j} ∈ N ×N : i 6= j} be the set of undirected links. For simplicity, and when there is
no risk of confusion, we will denote a link ij, with ij = ji when ij ∈ L′ and ij 6= ji when ij ∈ L.
Formally:

Definition 2.1.— A weighted network8 (on N) is a mapping g from L to [0, 1] such that g(ij) =
g(ji) for every ij ∈ L. The network g is unweighted if for every ij ∈ L, g(ij) ∈ {0, 1}.

For convenience, if i and j are two distinct elements of N , g(ij) will be simply denoted gij . Through-
out this paper, we let G be the set of weighted networks. For every ij ∈ L, δij is the network with
only one link (of weight 1) between i and j, that is δijkl is equal to 0 if kl 6= ij and equal to 1
otherwise. The following definition is the natural adaptation of pairwise stability concept (Jackson

5Contrarily to most standard models of network formation using games, as Bloch-Dutta [3], where players exert
some efforts (which are the strategies of the game) to create the links, the weights of the links being direct functions
of the efforts.

6For simplicity, N denotes either the set of agents, or its cardinal, and we assume N ≥ 2.
7The normalization in [0, 1] is without any loss of generality.
8Note that what we call “weighted network" is usually called “undirected weighted network" in the literature. The

network would be directed if we would authorize g(ij) and g(ji) to be different.
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and Wolinsky [18]) to weighted networks. Hereafter, we let vi : G → R be the payoff function of
each agent i ∈ N , and v = (vi)i∈N be the profile of payoff functions. Moreover, if g = (gij)ij∈L is
a weighted network, then for every ij ∈ L and every x ∈ [0, 1], g′ = (x, g−ij) denotes the weighted
network such that g′kl = gkl for every kl 6= ij and kl 6= ji, and g′ij = g′ji = x.

Definition 2.2.— A weighted network g ∈ G is said to be pairwise stable (resp. weakly pairwise
stable) with respect to v if:

1. for every ij ∈ L, for every x ∈ [0, gij [, vi((x, g−ij)) ≤ vi(g).

2. for every ij ∈ L, for every x ∈]gij , 1], if vi((x, g−ij)) > vi(g) then vj((x, g−ij)) < vj(g) (resp.
vj((x, g−ij)) ≤ vj(g)).

Thus, g is pairwise stable if no two agents could gain from increasing the weight of their common
link (Condition 2) and no single agent could gain by diminishing it (Condition 1). Condition 1 has
to be true if we reverse ij into ji, thus it holds for both players i and j. The difference between
pairwise stability and weak pairwise stability depends on what is meant by “no two agents could
gain": if the mutual gain is required to be strict for the two players, we get weak pairwise stability
concept, if it is required to be strict only for one agent, we get the (standard) pairwise stability
concept.

A first remark is that pairwise stability notion treats differently an increase and a decrease of a
link (the network being weighted or not). In social networks, for example, you can decide alone
to remove some link with another person, but you should decide together to increase the time you
spend to write to each other.

A second important remark is that Jackson and Wolinsky’s definition of pairwise stability (as well
as our extension to weighted networks) requires that each link gij can be increased independently of
the other links. In particular, this does not allow to bound exogenously the sum of weights around
every agent, in order to take into account that building a link is costly in terms of time, of energy,
etc. Indeed, if such an exogenous bound exists, then when the associated constraint is binded for
some agent, increasing the weight of some link around this agent requires to decrease at the same
time the weight of another neighbor link in order to respect the constraint, which is forbidden in
pairwise stability definition. Fortunately, this is not really a problem, since if we want to model
some cost of link creation (if any), we can simply incorporate it into the payoff function,9 which
will bound (endogenously) the weights of links around this agent at every pairwise stable network
g.

3. Existence of Nash-pairwise stable profiles

In the following, we provide a general existence result of a solution concept we call Nash-pairwise
stable pair, and which involves two parts: first a weighted network g which some agents form

9For example, the initial payoff vi of player i can be modified to incorporate this cost, by defining ṽi(g) =
vi(g) − λ(

∑
j 6=i gij) or ṽi(g) = vi(g) − λ(

∑
j 6=i g

2
ij) (where λ > 0 is some fixed parameter), depending if the cost is

a linear or a quadratic function of the weights (gij)j 6=i around player i. Note that an endogenous modelling of the
costs induced by link creation may be often more relevant than an exogenous one. For example, if each agent i has
a maximum amount of money to allocate, in order to keep (or to increase) the weights of the links around him,
we could assume that i can always borrow some (costly) extra amount of money to increase some link if necessary.
Remark that such modelling question is not specific to Network theory, but can be found everywhere in Economic
theory (see for example the modelling of transaction costs in General Equilibrium).
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endogenously according to pairwise stability rules,10 and simultaneously, some normal form game
that the agents can play. Here, the strategies of this game have no direct relationship with the
formation of the weights (as opposed to Bloch [3], where the strategies can be seen as amounts of
resources invested to form the weights of the links). An illustration, which is developed hereafter,
would be a public good model with N agents exerting some efforts (these are the strategies of
the game) for the provision of a public good, the agents forming at the same time some network
of relationships. Here, there are two different strategic aspects: (1) the choice of some level of
connection with each other agent (depending on its own level of efforts, but also on his location
in the network), and (2) the choice of the effort itself, which could open the door to free riding.
Remark that even if there are no direct relationship between the effort of each player and the weight
of its links, at equilibrium, the two variables should be related, so that finally each effort influences
indirectly the formation of the network. For example, we could imagine situations where free riders
choose very low efforts, and connect to all agent providing some high level of provision of public
good.

3.1 The general existence result

We now describe the model considered in this paper, which encompasses several existing models of
networks and games. Each player i ∈ N has to choose some strategy yi in some strategy space Yi
(for example, in the public model example discussed above, yi is the level of effort of player i for the
provision of a public good). We denote by Y = Πi∈NYi the set of strategy profiles of all players. We
assume that the payoff function of each player i ∈ N is a function vi : G × Y → R. We denote by
v = (v1, ..., vN ) the profile of payoff functions. For example, in the public goods model above, the
payoff of player i depends not only on the profile of efforts y = (y1, ..., yN ), but also on the network
g, which incorporates the possibility of externalities. In particular, in this example, the notion of
Nash-pairwise stability notion allows to endogenize at the same time the effort of each player and
the formation of the network.

Definition 3.1.— A network-game is a pair (Y, v), where Y is the set of strategy profiles, and
v = (v1, ..., vN ) the profile of payoff functions defined on G × Y .

Hereafter, we recall the following standard convention: if y = (yi)i∈N is a strategy profile, then for
every i ∈ N , y−i denotes the profile of all strategies except strategy yi, that is y−i = (yj)j∈N,j 6=i,
and the usual abuse of notation y = (yi, y−i) will be done. Our main result will require some of the
following assumptions:

(A1) Compactness and Convexity Assumption. For every i ∈ N , Yi is a nonempty compact and
convex subset of some finite dimensional vector space.

(A2) Continuity Assumption. For every i ∈ N , the function vi : G × Y → R is continuous.11

(A3) Quasiconcavity Assumption (resp. strict Quasiconcavity Assumption).

(i) For every (g, y) ∈ G × Y and every player i ∈ N , vi(g, (di, y−i)) is assumed to be quasiconcave
(resp. strictly quasiconcave) with respect to di ∈ Yi.

10In particular, this concept differs from a simple Nash equilibrium: two players at a same node will have to choose
a same action (a weight), according to rules that give them some power to increase or decrease this common weight.

11The set of weighted networks G is a convex and compact subset of the set F(L,R) of functions from L to R,
where F(L,R) is endowed with the natural multiplication and addition, and with its natural Euclidean topology.
The set G is endowed with the induced topology.
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(ii) For every (g, y) ∈ G × Y and every ij ∈ L, vi((x, g−ij), y) is assumed to be quasiconcave (resp.
strictly quasiconcave) with respect to x ∈ [0, 1].

Remark 3.1. Convexity, Compactness, Continuity and Quasiconcavity assumptions are standard in
Game theory, in particular to get the existence of a Nash equilibrium in strategic games.

We now define the main stability notion of the paper. Hereafter, (Y, v) is a network-game:

Definition 3.2.— The pair (g, y) ∈ G × Y is Nash-pairwise stable (resp. weakly Nash-pairwise
stable) with respect to v if:

1. ∀i ∈ N , ∀di ∈ Yi, vi(g, (di, y−i)) ≤ vi(g, y),

2. ∀ij ∈ L, ∀x ∈ [0, gij [, vi((x, g−ij), y) ≤ vi(g, y).

3. ∀ij ∈ L, ∀x ∈]gij , 1], vi((x, g−ij), y) > vi(g, y)⇒ vj((x, g−ij), y) < vj(g, y) (resp. vj((x, g−ij), y) ≤
vj(g, y)).

If (g, y) ∈ G × Y is Nash-pairwise stable (resp. weakly Nash-pairwise stable), we say that g is a
pairwise stable network (resp. a weakly pairwise stable network) associated to the strategy profile
y.

Remark 3.2. Assertion 1. says that no player can improve his payoff by modifying his strategy yi.
Assertion 2. says that no player can improve his payoff by decreasing the weight of his relationship
with another player. Assertion 3. says that there is no pair of players who can both improve their
payoffs by increasing the weight of their relationship.

The proof of the following theorem can be found in the appendix.

Theorem 3.1.— For every network-game (Y, v) satisfying (A1), (A2) and Quasiconcavity Assump-
tion (A3) (resp. strict Quasiconcavity Assumption (A3)), there exists (g, y) ∈ G×Y which is weakly
Nash-pairwise stable (resp. Nash-pairwise stable) with respect to v.

3.2 Existence of weighted Pairwise stable networks

If the payoff function vi of each player i ∈ N goes from G to R (i.e., there is no more strategy spaces
Yi), then we get, as a corollary of Theorem 3.1:

(A3bis) Quasiconcavity Assumption (resp. strict Quasiconcavity Assumption). For every g ∈ G and
every ij ∈ L, vi((x, g−ij)) is assumed to be quasiconcave (resp. strictly quasiconcave) with respect
to x ∈ [0, 1].

Theorem 3.2.— Let v = (vn)n∈N be a profile of continuous payoff functions from G to R satisfying
Quasiconcavity Assumption (A3bis) (resp. strict Quasiconcavity Assumption (A3bis)), then there
exists some network g ∈ G which is weakly pairwise stable (resp. pairwise stable) with respect to v.

Proof. Define Yi = {0} for every i ∈ N , and ṽi(g, 0) = vi(g). If v is continuous and satisfies
quasiconcavity assumption (A3bis) (resp. strict quasiconcavity assumption (A3bis)), then we can
apply Theorem 3.1 to (Y, ṽ), which gives the existence of a weakly Nash-pairwise stable (resp.
Nash-pairwise stable) pair (g, {0}). Then g is weakly pairwise (resp. pairwise) stable with respect
to v.

Example 3.1.— (Continuity is necessary for the existence of a weakly pairwise stable network)
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Consider two players, x ∈ [0, 1] being the weight of the link between them. The payoffs are defined
for i = 1, 2 by vi(x) = −x if x 6= 0 and vi(0) = −1. Then x > 0 is not pairwise stable, since some
player (in fact both) can increase his payoff by decreasing the weight x > 0 of the link. But x = 0 is
not pairwise stable, since both players can increase strictly their payoffs by choosing x = 1

2 . Thus,
there is no weakly pairwise stable network, although the payoffs are quasiconcave.

Example 3.2.— (Quasiconcavity is necessary for the existence of a weakly pairwise stable network)

The following example illustrate why quasiconcavity is, in general necessary. Again, consider two
players, x ∈ [0, 1] being the weight of the link between them. Let

x

y

1
3

1

1

0

v2(x)

v1(x)

v1(x) =

{
1
3 − x if x ∈ [0, 13 ],
x− 1

3 if x ∈ [13 , 1]

v2(x) =

{
1
3 + 2x if x ∈ [0, 13 ],
7
6 −

x
2 if x ∈ [13 , 1]

The network x = 0 is not weakly pairwise stable, because x = 1 is strictly better for both players.
Similarly, any x ∈]0, 13 ] is not weakly pairwise stable because x = 0 is strictly better for player 1.
Last, x ∈]13 , 1] is not weakly pairwise stable because x = 1

3 is strictly better for player 2.

Example 3.3.— (Strict quasiconcavity is necessary for the existence of a pairwise stable network)

In Example 3.8, it is proved that (12 ,
1
2 ,

1
2) is the only weakly pairwise stable network. It is not

pairwise stable, because if player 1 and 2 both increase x = 1
2 , player 1’s payoff is unchanged, but

player 2’s payoff increases strictly. In this example, strict quasiconcavity does not hold, for example
when x = 1

2 .

3.3 Link with other stability concepts of the literature

Pairwise stability notion of Jackson and Wolinsky is not the only stability concept applied to
networks in the literature (see for example pairwise Nash stability of Bloch and Jackson [4], pairwise
stable networks with transfers (Bloch and Jackson [4] [5]), or strongly pairwise stablility concept of
Bloch and Dutta [3]). Thus, a natural question is whether our technique of proof can be applied to
these concepts.12 In this subsection, we prove that among all these concepts, Pairwise stability is
the only one which allows some general existence result similar to Theorem 3.1.

Before, we briefly examine the relationship beween Theorem 3.2 and the possible existence of un-
weighted pairwise stable networks. First, if a weighted pairwise stable network happens to be
unweighted (that is if all its weights are equal to zero or one), then it is also pairwise stable in
the sense of Jackson and Wolinsky. But in general, the converse is false.13 Second, there are many
situations for which our result can be applied although there does not exist any unweighted pairwise
stable network (see, for example, Example 3.8 below).

12We thank an anonymous referee for suggesting us to develop the results of this subsection.
13More precisely, consider some payoff functions defined on the set of weighted networks. It is possible to restrict

them to unweighted networks. Then, in general, there could exist some unweighted pairwise stable network in the
sense of Jackson and Wolinsky (for the restricted payoff functions) which does not satisfy the definition of weighted
pairwise stability.
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In the following example, we now focus on strongly pairwise stability concept (see Dutta and
Mutuswami [10] or Bloch and Dutta [3]).14

Example 3.4.— There are three agents (the variables x, y, z on the links indicate the weights of
the links):

1 2

3

x

y z

The payoffs are given by v1(x, y, z) = x(34 − z) + y, v2(x, y, z) = z(34 − y) + x and v3(x, y, z) =

y(34 −x) + z. As in [3], for every link ij, we assume that agent i exerts some effort xji ∈ [0, 12 ] which
contributes to the final weight of this link. More precisely, given xji and xij, the weight of link ij is
assumed to be equal to xji + xij (this is a particular example of the additive case treated in [3]).

This defines a game, where the strategy of each player i is (xji , x
k
i ) ∈ [0, 12 ]2, j 6= k in {1, 2, 3}−{i},

and where the payoff of player i is vi(x, y, z), the weights x, y and z being defined additively from
all the efforts, as described above.

By definition, given some profile of efforts (x21, x
3
1, x

1
2, x

3
2, x

1
3, x

2
3), the network g = (x, y, z) = (x21 +

x12, x
3
1 + x13, x

3
2 + x23) is strongly pairwise stable if the profile of efforts is a Nash equilibrium of the

non cooperative game defined above, and if there is no pair (i, j) of players that can simultaneously
increase their payoffs by modifying their strategies (see [3]).

We now prove by contradiction that there is no strongly pairwise stable network (x21, x
3
1, x

1
2, x

3
2, x

1
3, x

2
3)

(although the payoff functions are multiaffine, and thus satisfies our set of assumptions). First, from
Nash equilibrium condition, player 1, who wants to increase y as high as possible, should choose the
maximum level of effort x31 = 1

2 ; similarly, player 2 chooses x12 = 1
2 and player 3 chooses x23 = 1

2 .

Now, we prove that all the other efforts should be equal to 1
4 . By contradiction, if x21 >

1
4 , then

x = 1
2 + x21 >

3
4 , thus player 3 would like to decrease the weight y of his link with player 1, thus he

chooses the minimal level x13 = 0, which entails y = x31 + x13 = 1
2 . Then, Players 2 should choose

the maximal level x32 = 1
2 to maximize the weight z, consequently z = x32 + x23 = 1. Now, for z = 1,

player 1 should choose a minimal level x21 = 0 to minimize the weight x, a contradiction with x21 >
3
4 .

Hence, by contradiction, we get x21 ≤ 1
4 , and by symmetry, x13 ≤ 1

4 and x32 ≤ 1
4 . In particular, x,

y and z are less or equal to 3
4 . Let us prove that these inequalities are in fact equalities: indeed,

by contradiction, if for example x < 3
4 (that is if x21 <

1
4), player 3 would choose a maximal level

x13 = 1
2 to maximize y, a contradiction with x13 ≤ 1

4 . Thus finally, we should have x = y = z = 3
4

and x21 = x13 = x32 = 1
4 .

To finish the contradiction proof, let us prove that the bilateral condition in the definition of strong
pairwise stability is false. Indeed, if player 2 modifies x32 = 1

4 for x32 = 1
2 , and player 3 modifies

x13 = 1
4 for x13 = 0, these two modifications being simultaneous, then it induces a new network

g = (x, y, z) = (34 ,
1
2 , 1), which gives a new payoff of 1 for players 2 and a new payoff of 1 for player

3, instead of 3
4 previously. Thus x = y = z = 3

4 is not strongly Nash pairwise stable, and finally,
there is no strongly Nash pairwise stable profile of strategies.

14Bloch and Jackson [4] concept of pairwise Nash stability is very close to strongly pairwise stability, but it can be
applied only to unweighted networks. This explain why we do not discuss this concept here.
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Another important concept in the literature is pairwise stability with transfers, introduced by Bloch
and Jackson ([4],[5]). It has been defined for unweighted networks, but it can be generalized for
weighted networks in the following natural way:

Definition 3.3.— The network g is pairwise stable with transfers if:

for every ij ∈ L, for every x ∈ [0, 1], vi((x, g−ij)) + vj((x, g−ij)) ≤ vi(g) + vj(g).

Remark that we could define for each link ij a fictive player, with strategy space [0, 1] and some
payoff function vi(g) + vj(g). Then, g is pairwise stable with transfers if and only if it is a Nash
equilibrium of this non cooperative game.

The following example proves that under our main assumptions (continuity and quasiconcavity) the
situation is similar to the previous example: a pairwise stable network with transfers may not exist.

Example 3.5.— Consider the network in Example 3.4, with the same notations. The payoffs are
now given by v1(x, y, z) = (1−z)(1−2x)−y if x ≤ 1

2 and v1(x, y, z) = −y otherwise, v2(x, y, z) = −y
if x ≤ 1

2 and v2(x, y, z) = −y+(2x−1)z otherwise; last, v3(x, y, z) = −(x+z−1)2−v2(x, y, z)−2y.
It is easy to see that these three payoff functions satisfy quasiconcavity and continuity assumptions.

Clearly, if (x, y, z) is pairwise stable with transfers, we should have y = 0. Then, as remarked above,
(x, z) has to be a Nash equilibrium of the non cooperative game where one (fictive) player is link 12,
whose strategy is x, and has a payoff v1(x, 0, z) + v2(x, 0, z). The other fictive player is link 23, its
strategy is z, and its payoff v2(x, 0, z) + v3(x, 0, z) = −(x+ z− 1)2. Since player 23 plays optimally
given x, we should have z = 1 − x. Also, player 12 chooses an optimal x given z: thus, we should
have x = 0 if z < 1

2 , x = 1 if z > 1
2 , and x ∈ {0, 1} for z = 1

2 , which is contradictory with x = 1−z.

3.4 Several applications of our main existence result.

The following subsection presents different existing models (or extensions of existing models), for
which our main existence result adds some new network-formation aspect.

Example 3.6.— (A Public good Provision model)

We extend a model introduced by Bramoullé and Kranton [6], by introducing some network-formation
aspect. Consider N agents. Agent i exerts some effort ei ∈ [0, ei], where ei > 0. Given the
(endogenous) network g ∈ G, the payoff function of agent i is

vi(g, e) = b(ei +
∑
j 6=i

gijej)− ciei − di
∑
j 6=i

gij

where e = (e1, ..., en) is the profile of efforts, ci > 0 is the marginal cost of effort for agent i, di > 0
is the marginal cost of forming a link for i, and b : [0,+∞[→ [0,+∞[ is strictly concave and strictly
increasing. When (d1, ..., dn) = 0 and when g is exogenous, this is exactly Bramoullé and Kranton’s
model [6].

We can apply Theorem 3.1, since each payoff function vi is continuous, concave with respect to each
link and concave with respect to each strategy ei. Consequently, there exists a weakly Nash-pairwise
stable pair (g, e = (e1, ..., en)) ∈ G×[0, ei]

N . Remark that we can get the existence of a Nash-pairwise
stable pair if we restrict the players to choose efforts in [ei, ei], where ei > 0 and ei > ei: indeed, in
this case, the payoffs are strictly-concave with respect to each link, and the strict version of Theorem
3.1 can be applied.
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This extends the analysis of Bramoullé and Kranton [6], since beyond the existence of a Nash
equilibrium of a profile of efforts, we get the existence of an endogenous network, associated to e,
which satisfies pairwise stability condition.

Example 3.7.— (Patent race: Goyal and Joshi [12])

We now apply our main existence result to the following extension of Goyal and Joshi Patent race
model [12] to weighted networks. Consider n firms who are competing for obtaining a patent. The
firm which wins the race gets the patent of value 1, the others get 0. We let gij ∈ [0, 1] measure some
possible cooperation in R&D between firm i and firm j. Let τ(ni(g)) denote the (random) time at
which firm i is ready to deposit some patent: it is assumed to follow some exponential distribution
whose parameter is ni(g) =

∑
j∈N−{i} gij. Thus, P (τ(ni(g(s))) ≤ t) = 1−e−tni(g), that is firm i can

get the patent sooner if the relationships with its neighbors increase. Assuming that the distribution
of the time of innovation is independent across the firms, we get that the expected payoff of firm i
is (see [12]):

πi(g) =
ni(g)

ρ+ 2ni(g) +
∑
j 6=i

nj(g−i)

If we fix some j 6= i, we can also write

πi(g) =
gij + aij(g)

2gij + bij(g)

where g−i denotes the network where all links with i are 0, ρ is the common discount factor,
aij(g) =

∑
j′ 6=j,j′ 6=i

gij′, bij(g) = ρ + 2
∑

j′ 6=j,j′ 6=i
gij′ +

∑
j 6=i

nj(g−i). Since we have 2aij(g) − bij(g) < 0,

an easy computation proves that πi(g) is strictly concave with respect to gij, thus satisfies strict
quasiconcavity Assumption, and continuity is straightforward. Thus we can apply Theorem 3.2, and
there exists some pairwise stable network.

The following example illustrates that there can be only one weakly pairwise stable network for
which the weights are in ]0, 1[ (that is, such network is not unweighted).

Example 3.8.— There are three players (the variables x, y, z on the links indicate the weights of
the links):

1 2

3

x

y z

The payoffs are given by v1(x, y, z) = x(12 − z) + y, v2(x, y, z) = z(12 − y) + x and v3(x, y, z) =
y(12 − x) + z. Let us prove that (12 ,

1
2 ,

1
2) is the only weakly pairwise stable network. First, by

Theorem 3.2, a weakly pairwise stable network g = (x, y, z) exists. If x > 1
2 , then player 3 should

decrease the weight y of his link with player 1, i.e. we should have y = 0. Then, both players 2 and
3 should increase together the weight z of their common link, i.e. z = 1. But then, player 1 should
decrease the weight x of his link with 2, i.e. x = 0, which contradicts x > 1

2 . Since all the variables
play the same roles, we finally have x ≤ 1

2 , y ≤
1
2 and z ≤ 1

2 . Now, if x <
1
2 , then both player 1 and
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player 3 should increase together the weight y of their common link, i.e. y = 1, a contradiction with
y ≤ 1

2 . By symmetry, we finally have x = y = z = 1
2 .

Example 3.9.— (A Two-way flow model)

We now adapt a model of Bala and Goyal [2] to weighted networks. We define ni(g) =
∑

j∈N−{i}

gij

the sum of the weights of all direct links from agent i to another agent. For every j 6= i, a path from
i to j is a finite sequence x0 = i, x1, ..., xk = j of distinct elements of N . Let Pj be the (finite) set
of all paths from i to j, and n′i(g) be the sum on all paths in some Pj for all j 6= i of the product of
weights along these paths. We can interpret n′i(g) as the benefit that agent i receives from his links,
and ni(g) as the cost of maintaining his links.

For every agent i, define
vi(g) = n′i(g)− cini(g),

where ci > 0 is the marginal cost of maintaining the links of player i.

The payoffs are multiaffine, thus there exists some weakly pairwise stable network. For example,
assume there are 3 players, and consider the network g = (x, y, z) in Example 3.8. In this case, we
find v1(x, y, z) = (x+y)(z+1−c1), v2(x, y, z) = (x+z)(y+1−c2) and v3(x, y, z) = (y+z)(x+1−c3).
If c1 < 1, c2 < 1 anc c3 < 1, then (1, 1, 1) is the only pairwise stable network, which corresponds
to the case where everybody fully connect to each other. If c1 ∈]1, 2[, c2 ∈]1, 2[ and c3 ∈]1, 2[, then
(0, 0, 0) and (1, 1, 1) are pairwise stable (no connection at all or full connection), but interestingly,
(x = c3 − 1, y = c2 − 1, z = c1 − 1) is another pairwise stable network which cannot exist in the
unweighted model. It corresponds to the level of weights such that no player has any possibility to
modify his payoff. Also, if c1 > 2, c2 > 2 and c3 > 2, then (0, 0, 0) is the only pairwise stable
network.

Example 3.10.— (Information transmission)

We extend to weighted networks an information transmission model due to Calvó-Armengol [7].
Hereafter, we follow the presentation of Calvó-Armengol and İlkılıç [8]. There are N agents. If
agent i and agent j are in a full relationship (gij = 1), some information can be transmitted from
one player to another player, with some probability pij. We assume that if the relationship is weighted
(gij ∈ [0, 1]), the probability of transmission is gijpij. The payoff of player i ∈ N is defined by

vi(g) = 1−
∏

j∈N−{i}

(1− pjigij)− cni(g),

where g is a weighted network on N , c > 0, ni(g) =
∑

j∈N−{i}

gij. The first term corresponds to the

probability that the message is transmitted to player i, and the second term to the cost of maintaining
his links. The payoffs are multiaffine, thus there exists some weakly pairwise stable network.

4. Appendix: proof of Theorem 3.1

First, we present informally the proof, in order to highlight the difference between our main model
(involving a generalization of Pairwise stability concept of Jackson and Wolinsky) and a standard
normal form game.

A natural idea to prove the existence of a Nash-pairwise stable pair (g, y) ∈ G × Y would be to use
the game-theoretic concept of best-response: for every pair of network and strategy profile (g, y),
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we can try to define a set Φ(g, y) of pairs (g′, y′) ∈ G × Y which are profiles of "best-responses" (of
all players) against (g, y) (in a sense to be precised), and then look for fixed-points of Φ.

It is easy to define what could mean that y′ = (y′1, ..., y
′
n) ∈ Y is a profile of best-responses against

(g, y): g being fixed, we could simply require that for every player i ∈ N , y′i is an optimal response
of player i against (g, y) (this is defined formally in Step 1 below). But defining what would be
a best response g′ ∈ G against (g, y) is more problematic: indeed, for every link ij of g, two
agents k ∈ {i, j} are both involved in the link. In particular, each one can compute his own set
PBRkij(g, y) of optimal weights at ij (where all the other weights g−ij and the strategy profile y
are fixed). Then, the problem is to (1) "merge" the two sets PBRiij(g, y) and PBRjij(g, y) into one
coherent set PBRij(g, y) (a sort of "merged best-response" at link ij), so that (2) a fixed-point of
Φ then provides a weakly Nash-pairwise stable pair, and so that (3) the multivalued function Φ
satisfies Kakutani’s theorem assumptions (and consequently admits a fixed-point). Step 2 below
explains how (1) can be solved, Lemma 4.1 below is the main result for (2), and (3) is proved in
Step 3 below. In the last Step 4, we prove that a weakly Nash-pairwise stable pair (g, y) is also
Nash-pairwise stable when strict quasiconcavity is assumed.

Step 1: Definition of standard best-responses with respect to y ∈ Y . For every player
i ∈ N , BRi(g, y) denotes the standard best-response of player i with respect to yi, the network g
and the other strategies y−i being fixed, that is

BRi(g, y) = {di ∈ Yi : ∀d′i ∈ Yi, vi(g, (di, y−i)) ≥ vi(g, (d′i, y−i))}.

Step 2: Definition of merged best-responses with respect to the weights of the links.

For every (g, y) ∈ G × Y , and for every non ordered link ij, y and all the weights g−ij being fixed,
we define PBRiij(g, y) the best response of player i with respect to the weight of the link ij:

PBRiij(g, y) = {g′ij ∈ [0, 1], ∀g′′ij ∈ [0, 1], vi(g
′
ij , g−ij , y) ≥ vi(g′′ij , g−ij , y)},

and we consider a similar definition for PBRjij(g, y).

As discussed above, neither PBRiij nor PBRjij are completely relevant for our issue, since in the
definition of a weakly Nash-pairwise stable pair, player i may have no power alone to impose some
weight in PBRiij(g, y) (and similarly for j). This is the fundamental difference between our model
(as well as Pairwise stability concept) and a standard game where the weights of the links would
be strategies of some players. The following multivalued function "merges" the two best-responses
PBRiij and PBR

j
ij of both players i and j, taking into account the rules of Nash-Pairwise stability

concept: let us define
PBRij(g, y) = [aij(g, y), bij(g, y)] (4.1)

where the function aij is defined by

aij(g, y) = min{minPBRiij(g, y),minPBRjij(g, y)} (4.2)

and the function bij by

bij(g, y) = min{maxPBRiij(g, y),maxPBRjij(g, y)}. (4.3)

Remark that the existence of PBRiij(g, y) and PBRjij(g, y), and the fact that these sets admit a
maximum and a minimum come from assumptions (A1) and (A2).

The following lemma proves that PBRij(g, y) is a subset of "stable" links (in the sense of weak
Pairwise stability) given the other links of g and given y.
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Lemma 4.1.— Under Assumptions (A1), (A2) and (A3), for every undirected link ij, PBRij(g, y)
is included in the set of weights g′ij ∈ [0, 1] such that (g′ij , g−ij) satisfies the definition of weak
Pairwise stability for link ij, that is:

(1) There does not exist g′′ij < g′ij such that vi(g′′ij , g−ij , y) > vi(g
′
ij , g−ij , y), or such that vj(g′′ij , g−ij , y) >

vj(g
′
ij , g−ij , y).

(2) There does not exist g′′ij > g′ij such that vi(g′′ij , g−ij , y) > vi(g
′
ij , g−ij , y) and such that vj(g′′ij , g−ij , y) >

vj(g
′
ij , g−ij , y).

In the following, by abuse of notation, we will say that such link g′ij is weakly Pairwise stable given
(g−ij , y).

Proof. From quasiconcavity and continuity assumptions, PBRiij(g, y) and PBRjij(g, y) are closed
intervals. By definition, for every g′ij < minPBRiij(g, y) or for every g′ij > maxPBRiij(g, y), we
have vi(g′ij , g−ij , y) < vi(gij , g−ij , y) (and similarly for j). To prove the above lemma, let us consider
the following cases:

(a) Case 1: assume PBRiij(g, y) and PBRjij(g, y) are disjoint. Without any loss of generality (per-
muting i and j if necessary), we can assume that for every (g′ij , g

′′
ij) ∈ PBRiij(g, y) × PBRjij(g, y),

g′ij < g′′ij , so that PBRij(g, y) = PBRiij(g, y). We only have to prove that every weight g′ij ∈
PBRiij(g, y) is weakly Pairwise stable given (g−ij , y). First, player i has no strict incentive to
decrease g′ij since g′ij is optimal for him. Second, player j has no strict incentive to decrease
g′ij , otherwise there would exist g′′ij < g′ij such that vj(g′′ij , g−ij , y) > vj(g

′
ij , g−ij , y). Then, de-

fining g′′′ij = minPBRjij(g, y), from the definition of PBRjij(g, y), we would get vj(g′′′ij , g−ij , y) >
vj(g

′
ij , g−ij , y). But from quasiconcavity of vj with respect to gij , and since g′ij ∈ [g′′ij , g

′′′
ij ], we would

get vj(g′ij , g−ij , y) ≥ min{vj(g′′ij , g−ij , y), vj(g
′′′
ij , g−ij , y)} > vj(g

′
ij , g−ij , y) a contradiction. Third,

the two players have no strict incentive to increase g′ij ∈ PBRiij(g, y) together (since player i has
no such incentive), which proves the lemma in the first case.

(b) Case 2: assume PBRiij(g, y) and PBRjij(g, y) intersect each other, but that no set is included
in the other. Without any loss of generality (permuting i and j if necessary), we can assume for
example that minPBRiij(g, y) < minPBRjij(g, y) and maxPBRiij(g, y) < maxPBRjij(g, y). Thus,
as previously, we have PBRij(g, y) = PBRiij(g, y), and we can follow the proof of Case 1 above.

(c) Case 3: if [PBRiij(g, y) ⊂ PBRjij(g, y)] or [PBRjij(g, y) ⊂ PBRiij(g, y)].

Without any loss of generality, permuting i and j if necessary, we can assume PBRiij(g, y) ⊂
PBRjij(g, y). In this case, PBRij(g, y) is equal to the interval [minPBRjij(g, y),maxPBRiij(g, y)]

(which is included in PBRjij(g, y)). Let us prove that every weight g′ij in this interval is weakly
Pairwise stable given (g−ij , y). First, player j has no strict incentive to decrease g′ij since g′ij is
optimal for him. Second, player i has no strict incentive to decrease g′ij : if g′ij ∈ PBRiij(g, y),
this is clear, and if g′ij /∈ PBRiij(g, y) (so that g′ij < minPBRiij(g, y)), we can do a contradiction
proof: if there would exist g′′ij < g′ij such that vi(g′′ij , g−ij , y) > vi(g

′
ij , g−ij , y), simply define g′′′ij =

minPBRiij(g, y), so that vi(g′′′ij , g−ij , y) > vj(g
′
ij , g−ij , y). From quasiconcavity of vi with respect

to gij , and since g′ij ∈ [g′′ij , g
′′′
ij ], we would get vj(g′ij , g−ij , y) > vj(g

′
ij , g−ij , y) a contradiction. Last,

as in the previous cases, the two players have no strict incentive to increase g′ij ∈ PBRij(g, y)
together, because player j has no such incentive since g′ij is optimal for him. This ends the proof of
the lemma.

Step 3: Kakutani’s theorem assumptions.
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By definition, PBRij has clearly nonempty and convex values. The following lemma will help to
prove that the graph of PBRij is closed:

Lemma 4.2.— Let X be a topological space, and Φ : X → R be a multivalued function such that
for every x ∈ X, there are two reals 0 ≤ a(x) ≤ b(x) ≤ 1 such that Φ(x) = [a(x), b(x)]. Then Φ has
a closed graph if and only if a is a lower semicontinuous function and b is an upper semicontinuous
function.

Proof. First we prove the implication. Let us assume that Φ has a closed graph. If a is not lower
semicontinuous at x, there exists ε > 0 and a sequence (xn)n∈N in X converging to x such that
for every n large enough, a(xn) < a(x) − ε. But since a(xn) ∈ Φ(xn), considering (a(xφ(n)))n∈N a
subsequence of a(xn) converging to some ā, and passing to the limit in the inequality a(xφ(n)) <
a(x)− ε, we get (1) ā ≤ a(x)− ε and (2) ā ∈ Φ(x) = [a(x), b(x)] (from closeness of the graph of Φ),
a contradiction. Similarly, we prove that b is upper semicontinuous.

Now, let us prove the converse implication: let us assume that a is lower semicontinuous and that
b is upper semicontinuous. Consider a sequence (xn)n∈N in X converging to x, and a sequence
yn ∈ Φ(xn) = [a(xn), b(xn)] converging to y. Since a(xn) ≤ yn ≤ b(xn), passing to the limit, and
from the assumptions above on a and b, we get a(x) ≤ y ≤ b(x), that is y ∈ Φ(x). This finally
proves that Φ has a closed graph. This ends the proof of the lemma.

To finish the proof of Step 3, just remark that PBRiij and PBR
j
ij have closed graphs with nonempty

and convex values (from Berge theorem, because they are best-responses of functions which are
continuous, quasiconcave with respect to the maximization variable, and defined on the com-
pact set [0, 1]). Thus, from the above lemma applied to the multifunctions PBRiij and PBRjij ,
we get that minPBRiij and minPBRjij are lower semicontinuous functions. As a consequence,
min{minPBRiij ,minPBRjij} is a lower semicontinuous function. Similarly, we get that maxPBRiij
and maxPBRjij are upper semicontinuous functions, and consequently the function
min{maxPBRiij ,maxPBRjij} is upper semicontinuous. To finish, just apply the converse part of
Lemma 4.2, where a is defined by a(g, y) = min{minPBRiij(g, y),minPBRjij(g, y)} and where b
is defined by b(g, y) = min{maxPBRiij(g, y),maxPBRjij(g, y)}. This finally implies that for every
ij, PBRij has a closed graph.

Finally, we can apply Kakutani’s theorem to the multivalued function Φ defined by

Φ(g, y) = Πij∈LPBRij(g, y)×Πi∈NBRi(g, y).

Thus it admits a fixed-point (g, y). By definition, (g, y) is a weakly Nash-Pairwise Stable pair, since
for every link ij, gij is weakly Pairwise stable given (g−ij , y) (from Lemma 4.1 above) and since
each yi is optimal for every player i, given g and y−i.

Step 4. To finish the proof, we prove that the weakly Nash-pairwise stable pair (g, y) is also Nash-
pairwise stable when strict quasiconcavity is assumed. By contradiction, assume that (g, y) is not
Nash-pairwise stable. Thus, there exist ij ∈ L and g′ij ∈ [0, 1], such that we have

vi((g
′
ij , g−ij), y) > vi(g, y)

and
vj((g

′
ij , g−ij), y) = vj(g, y),

From strict quasiconcavity assumption, we would get
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vi((
g′ij + gij

2
, g−ij), y) > vi(g, y)

and

vj((
g′ij + gij

2
, g−ij), y) > vj(g, y),

a contradiction with the definition of (g, y) being weakly Nash-pairwise stable.

Remark 4.1. When there are only two agents, assuming that each payoff function vi : [0, 1]→ R is
continuous15 and quasiconcave, the existence of pairwise stable networks can be derived as follows:
from continuity, each set arg maxx∈[0,1] vi(x) is nonempty and closed, thus it admits some minimum
element xi. Then x̄ = min{x1, x2} easily defines a pairwise stable network. Unfortunately, passing
to three agents, the same idea cannot be applied, because of discontinuity issues. Indeed, for
N = {1, 2, 3}, call x the weight of the link between 1 and 2, y the weight of the link between 1
and 3 and z the weight of the link between 2 and 3. Assume the payoff function of each player
i ∈ N is a function of (x, y, z) ∈ [0, 1]3 satisfying continuity and quasiconcavity assumption. A
natural extension of the two-players approach described above should drive us to define f12(x, y, z) =
min{min argmaxy∈[0,1]u2(x, y, z),min argmaxx∈[0,1]u1(x, y, z)}, and similarly for f13 and f23, by
circular permutation. Then, a fixed-point of the mapping f = (f12, f13, f23) would give a pairwise
stable network. But here, a standard fixed-point theorem like Brouwer’s theorem cannot be invoked,
because f can be discontinuous. For example, for u1(x, y, z) = x(y − 1

2) and u2(x, y, z) = x, then
f12 is discontinuous at every (x, y, z) such that y = 1

2 .
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